图中最短的路径问题是理论和应用的基石。现有的工作是边缘重量访问时间,但通常会忽略边缘重量计算时间。在本文中,我们提出了一个加权有向图的广义框架,其中每个边缘的成本可以通过多个估计器动态估计,该估计器提供不同的成本范围和运行时间。这引发了几个通用的最短路径问题,可以优化路径成本的不同方面,同时需要保证成本不确定性,从而为建模现实问题提供了更好的基础。我们提供完整的,任何时间来解决这些问题,并提供解决方案质量的保证。
translated by 谷歌翻译
有关行动成本的信息对于现实世界中的AI规划应用程序至关重要。最近的方法不仅依靠声明性的行动模型,还使用了在计划阶段应用的黑框外部动作成本估算器,通常是从数据中学到的。但是,这些可能在计算上很昂贵,并产生不确定的值。在本文中,我们建议对确定性计划的概括,并允许在多个估计器之间选择动作成本,以平衡计算时间与有限估计不确定性。这使问题表示能力更丰富,并且相应地更现实。重要的是,它允许计划者限制计划的准确性,从而提高可靠性,同时减少不必要的计算负担,这对于扩展到大问题至关重要。我们介绍了一种搜索算法,概括了$ a^*$,该算法解决了此类计划问题和其他算法扩展。除了理论保证外,与替代方案相比,广泛的实验还显示出大量的运行时节省节省。
translated by 谷歌翻译
计划问题的定义和表示是AI计划研究的核心。关键部分是动作模型的表示。数十年的进步改善声明性行动模型表示,导致了许多理论进步,并且有能力,有效的,独立于领域的计划者。但是,尽管该领域成熟,但AI规划技术仍然很少在研究界之外使用,这表明当前的表示未能捕获现实世界中的要求,例如利用复杂的数学功能和从数据中汲取的模型。我们认为这是因为假定建模过程已在计划过程之前进行并完成,即离线计划的离线建模。这种方法固有的挑战包括:声明性建模语言的表现力有限;早期致力于建模选择和计算,这是使用每个动作模型的最合适分辨率的排除 - 只有在计划期间才知道;并且难以可靠地使用非决定性,学识渊博的模型。因此,我们建议更改AI规划过程,以便在离线计划中进行在线建模,即使用访问计划过程的一部分计算甚至生成的动作模型。这概括了现有方法(离线建模)。拟议的定义承认了新的计划过程,我们建议一种具体的实施,以证明这种方法。我们勾勒出作为第一次尝试通过使用行动成本估算器进行计划的初步尝试获得的初始结果。我们通过讨论公开挑战来结束。
translated by 谷歌翻译
KL-regularized reinforcement learning from expert demonstrations has proved successful in improving the sample efficiency of deep reinforcement learning algorithms, allowing them to be applied to challenging physical real-world tasks. However, we show that KL-regularized reinforcement learning with behavioral reference policies derived from expert demonstrations can suffer from pathological training dynamics that can lead to slow, unstable, and suboptimal online learning. We show empirically that the pathology occurs for commonly chosen behavioral policy classes and demonstrate its impact on sample efficiency and online policy performance. Finally, we show that the pathology can be remedied by non-parametric behavioral reference policies and that this allows KL-regularized reinforcement learning to significantly outperform state-of-the-art approaches on a variety of challenging locomotion and dexterous hand manipulation tasks.
translated by 谷歌翻译
随着人们对精神危机及其社会影响的认识,在许多国家,提供紧急支持的在线服务变得司空见惯。接受寻求帮助者和提供者之间讨论的培训的计算模型可以通过识别高危个人来支持预防自杀。但是,缺乏特定领域的模型,尤其是在低资源语言中,对自动检测自杀风险构成了重大挑战。我们提出了一个模型,该模型将预训练的语言模型(PLM)与固定的一组手动制作(并经过临床批准)的自杀提示相结合,然后进行了两阶段的微调过程。我们的模型达到了0.91 ROC-AUC和0.55的F2分数,甚至在对话的早期就表现出了一系列强大的基线,这对于该领域的实时检测至关重要。此外,该模型在性别和年龄段之间表现良好。
translated by 谷歌翻译
我们提出了一种新型的深度学习方法,以分类19.Covid-19患者的肺CTS。具体而言,我们将扫描分为健康的肺组织,非肺部区域,以及两个不同但视觉上相似的病理性肺组织,即地面玻璃透明度和巩固。这是通过独特的端到端层次网络架构和整体学习来实现的,这有助于分割并为细分不确定性提供衡量标准。提出的框架为三个Covid-19数据集实现了竞争成果和出色的概括能力。我们的方法在COVID-19 CT图像细分的公共Kaggle竞赛中排名第二。此外,分割不确定性区域显示与两种不同放射科医生的手动注释之间的分歧相对应。最后,在比较患者的COVID-19严重程度评分(基于临床指标)和分割的肺病理时,显示了我们的私人数据集的初步有希望的对应结果。代码和数据可在我们的存储库中找到:https://github.com/talbenha/covid-seg
translated by 谷歌翻译
在过去的几年中,世界已转向多核和多核共享内存体系结构。结果,通过将共享内存并行化方案引入软件应用程序,越来越需要利用这些体系结构。 OpenMP是实现此类方案的最全面的API,其特征是可读接口。然而,由于平行共享内存的管理中普遍存在的陷阱,将OpenMP引入代码很具有挑战性。为了促进此任务的性能,多年来创建了许多源代码(S2S)编译器,任务是将OpenMP指令自动插入代码。除了对输入格式的鲁棒性有限外,这些编译器仍然无法在定位可行的代码和生成适当指令时获得令人满意的覆盖范围和精确度。在这项工作中,我们建议利用ML技术的最新进展,特别是自然语言处理(NLP),以完全替换S2S编译器。我们创建一个数据库(语料库),专门用于此目标。 Open-Opm包含28,000多个代码片段,其中一半包含OpenMP指令,而另一半根本不需要并行化。我们使用语料库来培训系统来自动对需要并行化的代码段进行分类,并建议单个OpenMP条款。我们为这些任务培训了几个名为Bragformer的变压器模型,并表明它们的表现优于统计训练的基线和自动S2S并行化编译器,这既可以分类OpenMP指令的总体需求,又要介绍私人和还原条款。我们的源代码和数据库可在以下网址获得:https://github.com/scientific-computing-lab-nrcn/pragformer。
translated by 谷歌翻译
在Web规模数据上预测的大型视觉和语言模型提供了对许多V&L问题无价的表示。但是,目前尚不清楚如何将它们用于以非结构化语言为特定于用户特定的视觉概念。这个问题来自多个域,从个性化图像检索到与智能设备的个性化交互。我们介绍了一个新的学习设置,称为个性化视觉和语言(PERVL),并使用两个新的基准数据集来检索和细分用户特定的“个性化”概念“野外”。在PERVL中,应该独立于下游任务(2)允许经过审慎的模型以免费语言来推论它们,并且(3)不需要个性化的负面示例。我们提出了一个用于解决PERVL的体系结构,该体系结构通过扩展了一个预审计模型的输入词汇,并用新单词嵌入新的个性化概念。然后,模型可以通过简单地在句子中使用它们来推理它们。我们证明我们的方法从几个示例中学习了个性化的视觉概念,并且可以使用丰富的文本查询有效地将它们应用于图像检索和语义细分中。
translated by 谷歌翻译
在机器学习中,我们传统上评估单个模型的性能,平均在测试输入集合中进行平均。在这项工作中,我们提出了一种新方法:在$ \ textit {单个输入点} $上评估时,我们测量了模型集合的性能。具体来说,我们研究了一个点的$ \ textit {profile {profile} $:模型在测试分布上的平均性能与他们在该点上的角度表现之间的关系。我们发现配置文件可以在分布和分发的模型和数据的结构中产生新的见解。例如,我们从经验上表明,实际数据分布由具有质量不同的点组成。一方面,有“兼容”点,在角度和平均性能之间具有很强的相关性。另一方面,有些点具有弱甚至$ \ textit {nogate} $相关性:提高整体模型精度实际上$ \ textit {hurts} $性能的情况。我们证明,这些实验观察与先前工作中提出的几种简化学习模型的预测不一致。作为一个应用程序,我们使用配置文件来构造一个数据集,我们称为CIFAR-10-NENG:CINIC-10的子集,因此对于标准模型,CIFAR-10-NENG上的准确性为$ \ textit {negalissiper {negalissiperational {negalishatied} CIFAR-10测试。这首先说明了一个完全逆转“准确性”的OOD数据集(Miller,Taori,Raghunathan,Sagawa,Koh,Koh,Shankar,Liang,Carmon和Schmidt 2021)
translated by 谷歌翻译
Several recent works find empirically that the average test error of deep neural networks can be estimated via the prediction disagreement of models, which does not require labels. In particular, Jiang et al. (2022) show for the disagreement between two separately trained networks that this `Generalization Disagreement Equality' follows from the well-calibrated nature of deep ensembles under the notion of a proposed `class-aggregated calibration.' In this reproduction, we show that the suggested theory might be impractical because a deep ensemble's calibration can deteriorate as prediction disagreement increases, which is precisely when the coupling of test error and disagreement is of interest, while labels are needed to estimate the calibration on new datasets. Further, we simplify the theoretical statements and proofs, showing them to be straightforward within a probabilistic context, unlike the original hypothesis space view employed by Jiang et al. (2022).
translated by 谷歌翻译